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Fig. 1. The construction of the 
feasible set of a tangled vertex.

Lagrangian methods are popular in the field of 
hydrodynamics. Such discretizations, in which the 
mesh moves with the fluid, have desirable features 

such as conservation of mass. However, in 2D and 3D when 
the simulated flow exhibits some rotation, the mesh can 
easily become tangled. In this case, the simulation fails. 
A common remedy to this entangelment problem is to 
introduce occasional mesh improvement (rezoning) followed 
by the remapping of physical quantities to the new and 
improved mesh. Such methods are referred to as arbitrary 
Lagrangian Eulerian (ALE) methods.

The rezone step in an ALE method typically relies on mesh 
smoothing which is perhaps triggered by some mesh quality 
indicators to keep the computational mesh in a valid state 
throughout a simulation. (An invalid mesh that has negative 
cell volumes results in simulation failure.) One drawback 
to this approach is that it is inherently heuristic and cannot 
guarantee a valid mesh throughout a simulation. In the case 
where, despite the rezoning step, a mesh becomes tangled, 
user intervention becomes necessary since conventional 
mesh smoothing algorithms typically cannot repair such a 
failed mesh.

We have developed a mesh untangling method that is based 
on the method presented in [1] and has improved robustness. 
The method is a purely geometric algorithm in 2D that is 
computationally efficient with a predictable cost per mesh 
vertex. Most importantly, it can be used not only as a mesh 
untangling method, but also as a mesh improvement method. 
In contrast to our method, most other existing robust mesh 
untangling algorithms are minimization-based and, thus, 
costly (for example, see [2]).

Our algorithm builds on two approaches to mesh untangling. 
The first approach is the feasible set method, in that a convex 
polygon, the feasible set, is constructed for each vertex in the 
mesh. This feasible set is the set of all coordinate positions 
that a vertex can occupy while maintaining mesh validity 
relative to its immediate neighbor cells. After the feasible 
set is constructed for a particular vertex in the mesh, this 
vertex then is placed at the centroid of the feasible set, 
resulting in an untangled mesh. The second approach is our 
weak untangling method.  This method can be viewed as 
a discrete and, hence, efficient version of a more standard 
minimization-based untangling method. We use it to move 
severely tangled vertices, which cannot be untangled using 
the feasible set approach, closer to a configuration that is 
amenable to untangling by the feasible set method.

Figure 1 illustrates the construction of the feasible set 
for a patch of four cells whose center vertex is tangled. 
The feasible set method is the intersection of a number 
of half planes that are determined by the geometry of the 
patch surrounding the tangled vertex. For a patch of four 
quadrilaterals there are 12 half-plane intersections. The first 
image (A) in the sequence depicts the initial tangled mesh 
fragment. The second image (B) depicts the intersection of 
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one of the half planes and the bounding box (light green) 
with the current feasible set (dark green). In the third image 
(C) we see another such half-plane intersection, and finally, 
image (D) depicts the feasible set in red with the previously 
tangled vertex placed at its centroid.

The feasible set untangling method alone can be used as a 
mesh smoothing method and, if used that way, is robust. 
Alternatively, it can be used in conjunction with a more 
traditional mesh smoothing method, such as Winslow’s 
method, to repair the mesh when it tangles. Figure 2 depicts 
a snapshot of a simulation where a high pressure gas spills 
through a gap in a wall from the left to the right. In this 
example, our feasible set untangling method was used in 
tandem with standard Winslow mesh smoothing. Without 
mesh untangling the mesh becomes tangled at the corners 
of the wall gap soon after the start of the simulation, and 
the simulation fails. In contrast, with mesh untangling the 
simulation continues to run robustly.
 
For further information contact Markus Berndt at 
berndt@lanl.gov.
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Fig. 2. Snapshot of an ALE 
simulation of high pressure 
gas on the left that spills 
through a hole in a wall. 
Feasible set untangling is 
employed in tandem with 
standard Winslow mesh 
smoothing during the rezone 
step. Without untangling, the 
simulation would fail at a 
much earlier time.
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